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Abstract-The finite strip method has been employed for the analysis ofshear-deformable composite
laminates since 1976. A number of works have shown the high accuracy, efficiency and convenience
of this method.

In the present study, a new shear-deformable finite strip is developed to analyse the static and
vibration behaviour of composite laminates. By selecting the proper displacement functions, the
new strip includes all the effects of material anisotropy and suits arbitrary inplane boundary
conditions at the ends. Thus, the present method is applicable not only to cross-ply laminates and
symmetrical angle-ply laminates, but also to arbitrary angle-ply laminates, e.g. antisymmetrical
angle-ply laminates and (0/45/ -45/90 degree) laminates.

INTRODUCTION

Fibre-reinforced composite materials have been extensively used as structural members in
a variety of industrial products and structures, such as rockets, aircraft, marine vessels,
auto bodies, pipes, pressure vessels etc. by virtue of the high strength-to-weight ratio, excellent
resistance to corrosive substances, satisfactory durability under fatigue loading and so forth.
Creating more efficient analysis methods for composite structures has become an important
target of many researchers.

For structures with regular geometry, e.g. a rectangular or sectorial plate with two
opposite simply-supported sides, the finite strip method has proven to be a very efficient
numerical method, Cheung (1976). This method uses a series of beam eigenfunctions to
express the longitudinal variations of displacements. Thus, the two-dimensional analysis is
transformed into a one-dimensional one. Consequently, the computer time and storage
requirement are reduced significantly, and the input data preparation and output interpret
ation are simplified substantially. In addition, the numerical errors attributed to material
anisotropy are cut down by considerable decrease in the number of unknowns involved in
the analysis.

The finite strip method has been successfully employed for the analysis of shear
deformable composite laminates since 1976 (Hinton, 1976, 1977; Craig and Dawe, 1983;
Azizian and Dawe, 1985; Dawe and Peshkam, 1989, etc.). All the references have shown
the high accuracy, efficiency and convenience of this method.

In the present study, a new shear-deformable finite strip is developed to analyse the
static and vibration behaviour ofcomposite laminates. By selecting the proper displacement
functions, the new strip includes all the effects of material anisotropy and suits arbitrary
inplane boundary conditions at the ends. Thus, the present method is applicable not only
to cross-ply laminates and symmetrical angle-ply laminates, but also to arbitrary angle-ply
laminates, e.g. antisymmetrical angle-ply laminates and (0/45/ - 45/90 degree) laminates.

In this analysis, the transverse shear deformation is taken into consideration following
the first order shear deformation theory based on the Mindlin assumptions. According to
this theory, any straight line originally normal to the plate middle surface is assumed to
remain straight, but not generally normal to the middle surface after deformation. In order
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Fig. 1. A finite strip.
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to simulate the flexural behaviour of both moderately thick plates and thin plates, reduced
Gaussian integration is used in forming the stiffness matrix of the strip.

FINITE STRIP FORMULATION

In the present analysis, the rectangular composite laminate is simulated by a number
of finite strips, each of which has 2-6 equally spaced nodal lines (Fig. 1). For the mth
harmonic, the displacement parameters of nodal line i are

{b};m = [Uim, fiim, Vim, Vim, Wim , VJxim, l/IYim]T. (1)

For the laminates with two simply-supported opposite sides, the boundary conditions at
both ends of the strip are

W = t/I x = 0, My = 0, Ny = N xy = ° at y = ° and y = /. (2)

In this case, the displacement field within a strip can be expressed as

r nd . mny r nd _ mny
U= m~1 j~l Nj(X)(Uim-zt/lxim) sm -/- + m~1 j~1 Nj(x)ujm cos -/-,

r nd mny r nd _. mny
v = m~1 j~1 Nj(x) (Vjm - zt/lyjm) cos -/- +m~l i~1 Nj(x)v im sm -/-,

r nd • mny
W = I I Nj(x)wim sm -/-

m= 1 i= I

or in a compact form

r nd

{f} = [U, v, W]T = I I [N]jm {b};m'
m~ I i~ I

(3)

(4)

where r is the number of harmonics employed in the analysis, nd is the number of nodal
lines in each finite strip, / is the length of the strip, Nj(x) is the transverse shape function
for nodal line i and has the following form :
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nd X-X-

Nj(x) = n--J

j~ I Xi-Xj
Hi

and [N]jm is the displacement matrix written as
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(5)

[N' (x)S
Ni(x)C 0 0 0 -zNj(x)S

-Z~(X)Cl[N];m = 0 0 Nj(x)C Nj(x)S 0 0

0 0 0 0 Nj(x)S 0

(6)

in which S = sin kmy, C = cos kmy and km= mn/l.
The following strain-displacement relationships are used in the analysis:

ov
ey = oy'

au ov
Yxy = oy + ax'

avow
Yyz = oz + oy'

au ow
Yzx = oz + ax' (7)

By substituting (3) into (7), the strain vectors can be expressed in terms of displacement
parameters as

r nd

{e} = [ex,eY,YXy,Yyz,Yzx]T = L L [B];m{£5}jm,
m=1 j= I

where [B]jm is the strain matrix with the following expression:

(8)

Nj.xS Nj,x C 0 0 0 -zNj,xS 0

0 0 -kmNiS kmNjC 0 0 zkmNjS

[B]im= kmNiC -kmNiS Ni,xC Nj.xS 0 -zkmNjC -zNi,xC

0 0 0 0 kmNiC 0 -NjC

0 0 0 0 Nj,xS -NiS 0

(9)
in which Ni,x = dNj(x)/dx.

It is assumed that the laminate is manufactured from orthotropic layers (or plies) of
preimpregnated unidirectional fibrous composite materials. Neglecting u" for each layer, the
stress-strain relationship in the x-y-z coordinate system can be stated as
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ax QII QI2 QI6 0 0 ex

ay QI2 Q22 Q26 0 0 ey

't'xy QI6 Q26 Q66 0 0 Yxy (10)

't'yz 0 0 0 Q44 Q45 Yyz

't'zx 0 0 0 Q45 Q55 Yzx

{a} = [Q]{e},

where Qij for i, j = I, 2, 6 are plane-stress reduced stiffnesses and Qij for i, j = 4, 5 are transverse
shear stiffnesses.

Following the procedure commonly used in the finite strip, analysis yields the stiffness
matrix and the mass matrix of the strip. The submatrices corresponding to nodal lines i and j
can be evaluated as follows:

[K]ijmn = iIi [B]l,;,[Q][BLn dx dy dz,

[MJumn = iIi p[N]l,;,[NLn dx dy dz,

(11)

(12)

where band h are the width and the thickness of the strip respectively, p is the density of the
composite material, and m and n denote the related series terms.

The integrations in (11) and (12) can be carried out analytically in the y and z directions,
and the following expressions may be useful:

1, ~ isin k.y sin k"y dy ~ {~ for m=n

for m oF n

1, ~ icos k.y cos k.y dy ~ {~ for m=n

for m oF n

and

!
2ml

( 2 2) fornm -n
/3 = rsin kmy cos kny dy =J, 0 fur

m-n = 2k+1

m-n = 2k

(k = 0, 1,2'00')

(13)

i,j = 4,5,

i, j = 1,2,6,

i,j = 1,2,6, (14)
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where nk is the number oflayers in the laminate, Zk_ I and Zk are the vertical coordinates ofthe
two faces of the kth layer, k 4 and k s are the shear correction factors.

In order to eliminate the "shear locking" effect in the analysis of thin plates, in the x
direction, the integrations in (11) and (12) are implemented using the reduced integration
technique corresponding to the use of (nd- 1) Gauss points across the strip.

The load vector for the mth harmonic and the ith nodal line equivalent to a distributed
vertical load pz is

(IS)

in which

(16)

Because the integral 13 does not always vanish for m =1= n, different series terms are coupled
in some cases, as described by Dawe and Peshkam (1989).

After assembling the above strip matrices over the entire structure, the deflections of
the laminate under external loading, {c5}, its natural frequencies, w, and the mode shapes
of the free vibration, {5}, can be obtained by solving the following matrix equations using
standard computer sub-programs:

[K]{c5} = {P}, (17)

(18)

NUMERICAL EXAMPLES

Six examples are presented to highlight the present approach. In the analytical
solutions, which are compared with the present results in the following examples,
k~ = k; = 5/6 was used. Therefore, the same value is also taken for the present analysis.
And in all the six examples only the quadratic strips (with three nodal lines each) are
employed. This type of strip is very efficient and successfully applied to the flexural analysis
of orthotropic composite laminates by Hinton since 1975.

1. Four layer (0/90/90/0) square cross-ply laminated plate under sinusoidal loads
A square laminate of side length a, and thickness h, is composed of four equally thick

layers oriented at (0/90/90/0 degrees). It is simply supported on all the edges and subjected
to a sinusoidal vertical pressure of the following form :

. nx . ny
pz = Psm-sm-

a a

with the origin of the coordinate system being located at the lower left corner on the
midplane.

The lamina properties are assumed to be :

where I is the fiber direction, 2 is the transverse to fiber inplane direction, respectively, and
3 refers to the direction normal to plate midplane.

By virtue of the symmetry of the deformation, only half the laminate is to be analysed.
One, two or three quadratic strips and one harmonic are employed in each analysis.
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Table I. (0/90/90/0) square laminated plate under sinusoidal load

(wh J£,/Pa") x 102 (J,(h 2/Pa 2
) (J,(h 2

/ Pa 2
) T",(h'/Pa 2

)

at at at at
a/h [a/2, a/2, 0] [a/2, a/2, h/2] [a/2, a/2, h/4] [0,0, h/2l

10 I strip 0.6629 0.5689 0.3617 0.0261
2 strips 0.6627 0.5220 0.3615 0.0248
3 strips 0.6627 0.5097 0.3615 0.0244
FSDT 0.6628 0.4989 0.3615 0.0241

20 I strip 0.4890 0.6014 0.2947 0.0237
2 strips 0.4910 0.55l8 0.2957 0.0226
3 strips 0.4911 0.5388 0.2957 0.0224
FSDT 0.4912 0.5273 0.2957 0.022l

100 I strip 0.4307 0.6138 0.2690 0.0227
2 strips 0.4335 0.5632 0.2705 0.0218
3 strips 0.4336 0.5499 0.2705 0.0215
FSDT 0.4337 0.5382 0.2705 0.0213

CPT 0.4312 0.539 0.269 0.0213

The resulting dimensionless deflections of the center and the maximum bending stresses
are listed in Table 1 in comparison with those from the first order shear deformation theory
(FSDT) (Reddy and Chao, 1981), and from the classical plate theory (CPT).

It can be seen that for the length-to-thickness ratios, alh, from 10 to 100, the present
solutions converge to the Mindlin plate theory very fast. Only one strip gives accurate
results of maximum deflections with error less than 0.5%. The accuracy of stresses is also
satisfactory, only two strips yield the maximum bending stresses of errors within 4.6%.

2. Two layer (81 - 8) square angle-ply laminated plate under sinusoidal load
A square laminate of side length a, and thickness h, consists of two equally thick layers

oriented at (81-8). Its four edges are hinged and free in the tangential direction but
immovable in the normal direction.

The lamina properties are assumed to be:

The load is the same sinusoidal distributed one as used in the previous example.
In the analysis, the entire plate is divided into two quadratic strips, and only one

longitudinal harmonic is required.
The resulting dimensionless deflections of the center for different values of alh and 8

are given in Table 2 and compared with the solutions of the thick plate theory (FSDT)
(Whitney and Pagano, 1970), and with the classical plate theory (CPT).

Table 2. (fJ/ -fJ) square laminated plate under sinusoidal load

lO'wh J£2/Pa"

a/h 0=0' 0=15 0=30 0=45'

10 Present 0.4564 0.6041 0.6108 0.5803
FSDT 0.4581 0.6053 0.6099 0.5773

20 Present 0.3227 0.4926 0.5222 0.4962
FSDT 0.3253 0.4949 0.5224 0.4944

50 Present 0.2845 0.4609 0.4973 0.4726
FSDT 0.2875 0.4636 0.4979 0.4711

100 Prsent 0.2790 0.4564 0.4938 0.4692
FSDT 0.2820 0.4591 0.4944 0.4678

CPT 0.280 0.458 0.493 0.467
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Table 3. Fundamental frequency of angle-ply laminated plate of
a/h = 10

No. /1 = 30° /1 = 45°
of

layers Present Bert and Chen Present Bert and Chen

2 12.79 12.68 13.13 13.04
4 17.77 17.63 18.58 18.46
8 18.56 18.42 19.40 19.29

16 18.74 18.60 19.59 19.48
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It can be noted that for all the listed a/h and e, the present analysis is in close agreement
with the analytical solutions.

3. Free vibration ofsquare anti-symmetrical angle-ply laminated plate
A square plate of side length a, thickness h, and density p, is laminated of an even

number of equally thick layers which are alternatively oriented at angles eand - e. The
length-to-thickness ratio is a/h = 10.

The boundary conditions and the lamina properties are identical to those of
Example 2.

The effects of the lamination angle and the number of layers on the dimensionless
fundamental frequency are shown in Table 3. The results obtained by using two quadratic
strips and one harmonic give a good comparison with the thick plate theory solutions (Bert
and Chen, 1978).

4. Effect of the bending-twisting coupling
A square laminate of a/h = 20 is constructed from four equally thick layers oriented at

(45/ -45/ -45/45 degrees). Its four edges are hinged and free to move in the normal inplane
direction but immovable in the tangential direction. It can be readily found that Bij = 0
(i, j = 1,2,6) but D 16 and D26 do not vanish, i.e. there exists bending-twisting coupling but
no bending-inplane coupling.

The material properties of each layer are as follows:

The laminate is simulated by 2 and 4 quadratic strips respectively. The resulting deflections
of the centre and the bending moments due to uniform distributed load qo are listed in
Table 4 in comparison with the analytical solution (Whitney, 1987) and with the orthotropic
solution which is obtained by neglecting bending-twisting coupling.

Table 4. (45/ -45/ -45/45 degree) square laminated plate under uniform load

No. of No. of
strips terms 103 wh3E2/qoa 4 102Mxlqoa

2 102Mv/qoa 2

2 2 8.153 4.522 4.685

4 2 7.982 3.881 3.935
3 8.107 4.079 4.149
4 8.150 4.174 4.213

Analytical
solution 8.090 4.175

Orthotropic
solution 6.915 3.674
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Table 5. Fundamental frequency of rectangular
(45/ -45/ -45/45) plate

wa'(p/E,h')OS

a/h b/a = I b/a = 2 b/a = 3 b/a = 4 b/a = 5

10 12.716 7.849 6.704 6.276 6.073
20 14.074 8.346 6.928 6.568 6.342
50 14.551 8.505 7.155 6.658 6.425

100 14.623 8.529 7.171 6.671 6.437

Table 6. Convergence for long plates in Example 5, b/a = 5, a/h = 20

wa'(p/E,h')OS
No. of
terms I strip 2 strips 3 strips 4 strips 8 strips

I 7.722 6.552 6.482 6.470 6.464
2 7.631 6.428 6.355 6.342 6.336
3 7.624 6.411 6.337 6.324 6.318
4 7.615 6.405 6.331 6.318 6.312

10 7.604 6.393 6.319 6.306 6.300

Table 7. (0/45/ -45/90 degree) square laminated plate

a/h lO'wh 3E,/I oa' wa'(p/E,h')OS

10 1.6406 9.67
20 1.4879 10.31
50 1.4356 10.55

100 1.4272 10.59

5. Effect ofaspect ratio b/a onfree vibration of rectangular (45/ -45/ -45/45 degree) plate
The free vibration of a rectangular (45/ -45/ -45/45 degree) laminate of side lengths

a and b is analysed by the present method. The material properties and boundary conditions
are identical to example 4.

A variety of strip divisions combined with different numbers ofseries terms is employed
for the analysis. It is found that only four quadratic strips (parallel to longer sides) and
two series terms are sufficient to give converged solutions for the fundamental frequency
of the laminate and further increasing the number of strips and series terms yields only little
improvement.

The results of dimensionless fundamental frequency for different values of aspect ratio
b/a and length-to-thickness ratio a/h are shown in Table. 5. And the convergence for long
plates (b/a = 5, a/h = 20) is given in Table 6.

6. Deflection andfree vibration of (0/45/ -45/90 degree) laminate
A square laminate is made up of four equally thick layers oriented at (0/45/ - 45/90

degrees). Its four edges are hinged and free to move in both tangential and normal inplane
directions but fixed at all the corners. The material properties are identical to example 2.

The plate is simulated by four quadratic strips with four series terms.
The resulting central deflection due to uniform load qo and the fundamental frequency

are listed in Table 7 as functions of the length-to-thickness ratio, a/h.

CONCLUSION

By selecting the proper displacement functions, the present finite strip method includes
all the effects of material anisotropy and suits arbitrary inplane boundary conditions at the
ends. Thus, this method is applicable not only to cross-ply laminates and symmetrical angle
ply laminates, but also to arbitrary angle-ply laminates, e.g. antisymmetrical angle-ply
laminates and (0/45/ -45/90 degrees) laminates.
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Numerical examples show a close agreement between the present method and the
analytical solutions.
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